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Hyperspectral sensors are electro-optic sensors which typically operate in visible and near
infrared bands. Their characteristic property is the ability to resolve a relatively large number (i.e.,
tens to hundreds) of contiguous spectral bands to produce a detailed profile of the electromagnetic
spectrum. In contrast, multispectral sensors measure relatively few non-contiguous spectral
bands. Like multispectral sensors, hyperspectral sensors are often also imaging sensors,
measuring spectra over an array of spatial resolution cells. The data produced may thus be viewed
as a three dimensional array of samples in which two dimensions correspond to spatial position
and the third to wavelength.

Because they multiply the already large storage/transmission bandwidth requirements of
conventional digital images, hyperspectral sensors generate formidable torrents of data. Their fine
spectral resolution typically results in high redundancy in the spectral dimension, so that
hyperspectral data sets are excellent candidates for compression. Although there have been a
number of studies of compression algorithms for multispectral data [1,2,3,4], we are not aware of
any published results for hyperspectral data.

In this paper we compare three algorithms for hyperspectral data compression. They were
selected as representatives of three major approaches for extending conventional lossy image
compression techniques to hyperspectral data. The simplest approach treats the data as an
ensemble of images and compresses each image independently, ignoring the correlation between
spectral bands. The second approach transforms the data to decorrelate the spectral bands, and
then compresses the transformed data as a set of independent images. The third approach directly
generalizes two-dimensional transform coding by applying a three-dimensional transform as part
of the usual transform-quantize-entropy code procedure. The algorithms studied all use the
discrete wavelet transform. In the first two cases, a wavelet transform coder (using the algorithm
described in [5]) was used for the two-dimensional compression. The third case used a three
dimensional extension of this same algorithm.

These algorithms were tested on several data sets obtained from the TRW imaging
spectrometer (TRWIS). This sensor provides measurements from 90 uniform width spectral
bands which cover a wavelength range from approximately 400 nm to 800 nm, and is mounted in
a helicopter or small plane. Spectra are obtained simultaneously from a linear array of 256 spatial
resolution cells. Platform motion is utilized to scan this array, thus obtaining spatial samples in a
second spatial dimension. A typical TRWIS data set consists of a 90x256x450 array of one byte
samples.

Although signal to noise ratio (SNR) and related mean square distortion metrics are
convenient and widely used, their relevance to practical utility or perceptual quality is uncertain.
This is of particular concern with respect to hyperspectral data, since the art of interpreting and
utilizing this data is still developing. To supplement SNR measurements for the different
algorithms, we also applied example pixel classification and image segmentation algorithms to the
reconstructed data sets in order to assess the impact of compression losses on automatic data
exploitation. These applications include pixel classification using a k-means algorithm and region
based spectral image segmentation.

Our results showed substantial differences in the performance of the three algorithms. The
spectral decorrelation algorithm produces the best results, but also requires the most
computational effort. The three dimensional wavelet algorithm's performance came in second, but
well ahead of the band independent algorithm. These results clearly demonstrate the importance of
exploiting the spectral redundancy. Spectral decorrelation performs best because the transform is
optimally matched to the data, whereas the wavelet transform is suboptimal but computationally
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more efficient. Interestingly, individual spectral bands displayed as images often look better in the
reconstructed data than the original image, particularly for the spectral decorrelation algorithm.
This is because the compression process in effect filters out sensor noise from the original signal.
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Band-independent Wavelet Compression. This algorithm was primarily studied as
a reference point for measuring the gains due to inter band processing. One advantage is that
individual bands can be reconstructed without having to decompress the entire data cube. This is
useful if one knows in advance that only a few spectral bands will be reconstructed from the
compressed data, but not specifically which bands.

The performance of this algorithm of course depends entirely on the algorithm used to
compress the individual bands. We selected the wavelet transform coding algorithm in [5] because
our previous studies had shown its performance to be superior to DCT and DPCM algorithms and
comparable to other wavelet algorithms. This algorithm first computes the discrete wavelet
transform of the image using the Mallat [9] recursion and a Daubechies 4-tap wavelet kernel [8].
The transform is then partitioned into a collection of rectangular blocks, and quantizer bit rates are
optimally assigned to each block using the algorithm described in [6,7]. The quantized
coefficients are Huffman coded, and the side data consisting of the bit rate allocations for each
block is losslessly compressed using the UNIX "compress” utility. -

Three Dimensional Wavelet Transform Compression. This algorithm is a
straightforward generalization of the two dimensional algorithm described above. All the
components of the two dimensional algorithm have obvious three dimensional analogs; the major
difficulty is the more complex bookkeeping required to manage three dimensional data. Our
implementation emphasized simplicity and flexibility over efficiency, relying instead on a
powerful workstation (a Sun SPARC 10), plenty of memory, and patience. However,
hyperspectral data sets are generally large (around 36MB in our examples) and the despite the
algorithm's moderate complexity, processing can be time consuming. We expect that optimizing
the implementation, particularly by improving memory management, would speed computation
significantly, even on fast machines with large memories. ,

The three dimensional wavelet transform is constructed as a separable extension of the two
dimensional transform, much as the two dimensional transform can be constructed by applying
one dimensional wavelet filter banks over each dimension. Each stage of the separable three
dimensional transform applies one dimensional filter banks successively across the two spatial
dimensions and the spectral dimension. This decomposes the data into seven highpass channels
and one lowpass channel. The seven highpass channels contain oriented edge information (in the
two spatial directions, the spectral direction and the four diagonal combinations of these
directions). Each channel contains one eighth of the original number of samples. Applying this
operation recursively to the lowpass channel produces a series of nested octant decompositions.

We quantize the transform coefficients by partitioning each channel at each scale into
three-dimensional sub-blocks. Within a sub-block, coefficients are quantized with the same
number of bits per sample. Because large magnitude high pass coefficients tend to be sparsely
distributed, many blocks can be quantized at low bit rates while introducing little distortion as a
result. The actual bit allocation is determined using the algorithm described in [6,7]. This
algorithm assumes that the mean square quantizer distortion is an exponential function of the bit
rate times the sample variance of the data. It produces a bit allocation which minimizes the mean
square quantization error subject to a constraint on the maximum average bit rate.

As in the two dimensional algorithm the quantized coefficients are Huffman coded. One
difference is that three dimensional case uses a Lloyd-Max quantizer which is optimized for-each
data set, and Huffman codes are determined based on the actual sample distributions for each bit
rate. The two dimensional algorithm uses a fixed uniform quantizer and fixed Huffman codes
(both optimized for Laplacian statistics). For large hyperspectral data sets, the additional side data
needed to transmit the quantizer coefficients and Huffman code tables is relatively insignificant.
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The side data also contains the quantizer bit rate allocations, and is compressed using the UNIX
"compress" utility.
Band Decorrelation Wavelet Compression. The compression algorithm consists of

the following steps. First we organize the data as a collection of spectral vectors D = {d “},

where a spectral vector d, , consists of all spectral samples corresponding to spatial resolution cell

(k,1). The spectral vectors lie in an n-dimensional Euclidean space, where n is the number of
spectral bands. To each vector in D we then apply an affine transformation

T:d I, > T(d K I) =c, I where ¢, , has dimension m <n, to produce the transformed data set

C= {c,‘,,}. This data set is then compressed on a band by band basis using two dimensional

wavelet coding as described above, with one key difference. The band independent algorithm
compresses each spectral band to the same bit rate, but the band decorrelation algorithm varies the
bit rate from plane to plane (subject to an upper bound constraint on the average bit rate). This is
done because the transformation T concentrates most of the energy in a few spectral bands, so that
allocating higher bit rates to these bands (and correspondingly lower rates to lower energy bands)
significantly reduces distortion. The bit allocation is determined by the optimal algorithm
described in [6,7]. This algorithm minimizes distortion assuming that the band compression
algorithm has an exponential bit rate vs. mean square distortion curve with amplitude proportional
to the sum squared in-band energy, and assigns bit rates to bands in proportion to their log-sum-
square energy.

To reconstruct the data, C is reconstructed from the wavelet encoding for each band, and

then the pseudo-inverse transformation T*:c,, > T‘(c,‘_,)s d,,is applied to reconstruct the

original data. Note that distortion is introduced both from the lossy wavelet coding and because
the transform T generally has no true inverse. However, the pseudo-inverse transform spreads
reconstruction errors in C over many spectral bands, making them much less perceptible.
Furthermore, the decorrelation transform is structured to minimize the loss of information due to
its singularity.

Although we use the well known discrete Karhuenen-Loeve transformation (or principle
components analysis) for spectral decorrelation, we feel it is worthwhile to outline a derivation of
this transform from a physical and geometric approach that may be less familiar than the statistical
approach. This approach shows that the transform is optimal in a sense that does not depend on
statistical assumptions that may be hard to justify in practice. It also provides insight into the
effectiveness of this transform for compression.

We assume that the spectra in any given data set are primarily linear combinations of
spectra corresponding to the various materials constituting the scene. Generally, the number
different materials is much less than the number of spectral bands. We therefore expect most of
the spectral vectors to lie in, or close to, a linear subspace whose dimension is much lower than
the dimension of the spectral vectors. If we could find the basis vectors for this space, than we
could produce a lower dimensional approximation by projecting the original spectral vectors onto

this space.
Stated more precisely, given a collection Dz{dl,dz,---,dp} of data vectors in a n-

dimensional linear space L, we wish to find a set of m orthonormal n-vectors (with m < n),
spanning a subspace S of L, such that the sum of the squired distances between each data vector
in L and its orthogonal projection onto S is minimized. If we define the sample autocovariance

matrix R= 2:_1d,‘df it can be shown that the required basis vectors are the unit eigenvectors
{el,ez,---,em} corresponding to the m largest eigenvalues of R. Note that the coordinates in S of

the projection any d in L onto S are simply its inner products with the basis vectors,
(e/d,ejd,-,e7d). Furthermore, any vector ¢ in S with coordinates (¢,,-+,c,,) can be
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represented in L as a linear combination of the basis vectors ¢ = Z:ﬂcke,t . We thus have the

transform T:L — S represented by the matrix T whose rows are the (transposed) basis vectors
of §, i.e. T(d) = Td. Furthermore, this transformation has the pseudo-inverse T*:S — L with

T*(c)=
Notc that in our algorithm, T is determined specifically for each data set, based on the

sample autocovariance R. Some spectral decorrelation algorithms, such as [1] use a fixed T
derived from statistical model that is independent of the actual data. Although this saves

computation, it sacrifices the optimality of the transform. Computing T might appear
burdensome, but for hyperspectral data the effort required to apply T is typically many times the

effort of the eigensystem solution needed to find T. A more serious objection may be that T
must be sent as side data in order to decompress the data.

As a corollary of the construction of T, it turns out that the eigenvalues of R
corresponding to basis vectors in S equal the sum of squares of the coefficients in the
corresponding "spectral" band of the transformed data set C. The fact is quite useful because these
sum squared band energies are the statistics required to allocate average quantizer bit rates to each
band. This means that these bit allocations be determined before the spectral decorrelation
transform is actually applied. As a result, rows corresponding to zero or near zero bit rates can

simply be dropped from T, mgmﬁcantly reducmg the number of operanons requ1red to compute
the transform.

Experlmental results. We present results for two data sets produced by the TRWIS
sensor. These data sets each contain 90 uniformly spaced and contiguous spectral bands,
spanning a wavelength range of 400 to 800 nm. Within each spectral band, there are 450 raster
lines with 236 samples per line, with eight bit deep samples. They have been calibrated to
compensate for variations in illumination intensity with bandwidth, so that the samples actually
represent estimated percent reflectance. Consequently, one expects sample values between zero
and 100, but because the calibration is with respect to a diffuse white reference reflector, specular
reflections can produce values above 100. Figures 1 and 2 show images from one spectral band in
each of these data sets. The first data set ("houses") shows a residential area with houses and
vegetation. The second data set ("tents") is an aerial view of tents and military vehicles on a sandy
background.

Figure 3 shows plots of peak-signal to noise ratio (PSNR) as a function of compression
ratio for each data set and each algorithm. We define PSNR as the square of maximum sample
value in the original data set divided by the mean squared error between the original and
reconstructed images. The vertical scale in the figure shows PSNR in decibel units. The
horizontal scale shows the ratio of the original file size to the compressed file size. For every
algorithm, the "tents” PSNR is higher than the corresponding PSNR for the "houses", which
reflects the greater compressibility of this image. Other than this uniform vertical shift, the results
for the two data sets are quite similar. Substantial differences between the algorithms are evident.
The PSNR for the 3-D wavelet transform is two to three dB higher than the band independent
algorithm, and in turn the spectral decorrelation PSNR exceeds the 3-D wavelet transform by
about four dB.

Comparisons of spectral band images clearly reflect the differences in the rate-distortion
curves. Figure 4 shows images of the same spectral band from ‘original and
compressed/reconstructed versions of the "houses"” data set. The band independent algorithm was
used for the top row of images, the 3-D wavelet algorithm for the middle row, and the band
decorrelation algorithm for the bottom row. Within each row, the leftmost i image is the original
data, and the three remaining images correspond to increasing compression ratios from left to
right. The spectral decorrelation images are clearly much less distorted than the others. When
viewed on a high quality display, distinguishing the reconstructed spectral decorrelation image
from the original requires close observation, even at the highest compression ratio. In the case of
the 3-D wavelet transform, many of the fine, high contrast details are preserved fairly well, but

126

L ————



there is a noticeable loss of texture and detail in low contrast regions. At the highest compression,
these losses are quite obvious. The quality of the best band independent reconstruction appears to
be about equivalent to the worst 3-D reconstruction. At the highest compression, all detail is lost,
although high contrast edges are fairly well preserved.

Examining the spectral decorrelation images reveals some interesting effects. Although
distortion is almost imperceptible, at the highest compression ratio there are a few regions in
which there are systematic shifts in the gray levels at which certain features in original data are
reproduced. (E.g., the small, crescent shaped dark area immediately below the house at the center
left of the image and a curved, dark area contained within a bright, semi-elliptical area at the center
of the right edge). These areas apparently contain materials whose reflection spectra are outside
the subspace spanned by the spectral decorrelation basis. Since the basis is selected to optimize a
mean squared criterion, small or infrequently occurring spectra tend to be poorly represented. As
a consequence, in applications where one wishes to detect spectral shapes that are sparsely
represented in the original image (such as finding a few camouflaged tents in a forest), spectral
decorrelation may perform poorly despite producing excellent mean square error based figures of
merit, such as PSNR. In contrast, the band independent and 3-D wavelet algorithms appear to be
free of such systematic gray level shifts.

This illustrates the point that it is difficult to assess reconstruction quality without
considering how the data is to be used. In dealing with ordinary two dimensional images, it is
often assumed implicitly that using the data means that a human being looks at it. With
hyperspectral data, it is much more likely that human visual processing will be augmented or
supplanted by automated processing. One might even go so far as to view hyperspectral data
simply as an ensemble of one dimensional spectral signals, so that the concept of an "image" is
irrelevant. In order to compare the different algorithms from this standpoint, we applied two
spectrally based automatic processing algorithms to the reconstructed data. Although these
algorithms may have limited practical utility by themselves, they are potential elements of more
practical processing systems, and serve as useful illustrations.

The first algorithm classifies spatial resolution cells either as "object” (i.e., tent or house)
or background cells based on the shape of their spectral profiles through the use of a simple
Bayesian classifier as described in [10]. This approach was chosen for its simplicity and ease of
interpretation. Although other, more powerful classifiers exist, we wanted to avoid clouding the
compression evaluation with questions about the classifier. Also, this classifier is well known and
was easily implemented through the use of the Khoros Image Processing system [11].

The classifier was designed in several steps. First, the image was preprocessed so that
each spectra had unit energy. This was done so that the classifier made its decisions based on the
shape of the spectra rather than on the overall intensity and would work equally well under’
different scene illuminations. Second, the image was clustered by the k-means clustering
algorithm which is essentially the Lloyd-Max vector quantizer. Clustering is performed by first
starting with an initial set of cluster centers and, at each iteration, assigning each data point to the
nearest cluster center and then recomputing the cluster centers. Both the number of clusters and
the initial set were chosen by hand so that representative samples from each class were included.
Third, the clusters were assigned to classes by visually inspecting the image. The result of the
classifier design was, for each data set, a set of clusters for each class and statistics (mean and
covariance) for each cluster. Pixel by pixel classification is performed by finding the Mahalanobis
distance to each cluster center (using the cluster mean and covariance) and finding the minimum.
The class containing this cluster as a member is the class assignment for the data point.

We applied the classifier to the reconstructed data sets, and collected statistics on spatial
cells that were classified differently in the original and reconstructed data sets. Figure 5 shows the
percentages of "object” pixels in the original data misclassified in the reconstructed data as a
function of compression ratio for each compression algorithm (the lines marked with o's). The
same trends seen in the PSNR measurements are evident in this table: spectral decorrelation
classified the most accurately, followed by 3-D wavelets, then the band-independent algorithm.
The differences between algorithms are dramatic. The 3-D wavelets algorithm missclassifies about
half as frequently as the band independent algorithm at similar compression ratios, and the worst
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case spectral decorrelation algorithm performance is better than the best case for the other
algorithms. Figure 6 shows maps of cell classifications for the original data sets and reconstructed
data sets at the highest compression rate for each algorithm. Figure 7 shows corresponding maps
of misclassified cells. All of these maps are at the lowest compression ratio tested for each
algorithm.These results show that the classification algorithm is more sensitive to distortion that
visual comparisons. At these relatively low compression rates, spectral band image distortion is
not readily visible. Nonetheless, it induces significant classification errors.

The second example algorithm segments a complete hyperspectral data set into spatial
regions such that cells within a region have similar spectral profiles. The segmentation process
compares the spectral profile of the data at each spatial location to its neighbors; thus both the
spatial and spectral properties of the data are important. Segmentations of the original cube and the
compressed and uncompressed version are compared, both by visual inspection, and through a
measure of differences between the edge maps. This measure combines discrepancies of two
types: those where a pixel was marked as an edge in the original and not in the
compressed/uncompressed data, and those where a pixel was marked as an edge in the
compressed/uncompressed and not in the original. The two types of "errors" were combined to
give a final measure of edge detection errors, expressed as a percentage of pixels across the entire
image. While this error measure is simple, it is sufficient to provide a measure of the amount of
distortion in the spatial and spectral properties of the cube.

The result of applying the spectral segmented to the "tents" data cube is shown in Figure
8. The boundaries of each region of the image are marked in dark. The resulting segmentations
of applying the same algorithm to the compressed/uncompressed data sets using the three
compression algorithms with three different compression ratios each are also shown in Figure 9.
Quantitative measures of the edge errors for each of the three approaches (at various compression
ratios) are shown for three different data sets in Figure 5 (the line labeled with x's). For all three
cases, the spectral decorrelation algorithm produced segmentations closest to the original data,
followed by the three dimensional transform approach.
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Figure 3. Peak signal to noise ratio vs. compression ratio.
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Figure 4. Examples of reconstructed images. Top row: band independent compression,
from left to right: original image, 19:1, 34:1 and 59:1 compression. Middle row: 3-D

wavelet compression, from left to right: original, 21:1, 41:1 and 92:1 compression. Bottom
row: spectral decorrelation compression, left to right: original, 60:1, 112:1, 171:1 compression.
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Figure 6. Cell classification maps. "Object" cells shown in white.
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Figure 7. Misclassified cell maps. Incorrectly classified cells shown in white.
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Figure 9. Region boundaries for reconstructed data sets. Left column: band
independent algorithm. Middle column: spectral decorrelation algorithm. Right column: 3-D
wavelet transform algortithms. Compression ratios shown to left of each image.
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